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The methodology (based on the so-called Dynamic Virtual Distortion Method)
of design of structures exposed to impact loading is presented. Maximization of
energy dissipation can be chosen as the objective function for optimal structural
adaptation to impact load. The cross-sections of structural members as well as
stress levels triggering plastic-like behaviour of energy dissipaters are design pa-
rameters. A general formulation of this problem as well as particular cases are
discussed.
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1. Introduction

Adaptive structures (structures equipped with sensor system, as well as
controllable semi-active dissipaters, so-called structural fuses) with highest
ability of adaptation to extreme overloading are discussed.

The dynamic formulation of this problem allows for development of effec-
tive numerical tools of optimal design for the best structural crash-worthiness
(see [2]). Structures with the highest impact absorption properties can be de-
signed in this way. The proposed optimal design method combines sensitiv-
ity analysis with remodelling process and plastic-like stress-limit adaptation,
proposing an approach (with material distribution as well as stress limits
control) how to design an optimally redesigned structure. The so-called Vir-
tual Distortion Method (see [1]), leading to analytical formulas for gradient
calculations, has been used in numerically efficient algorithm.
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2. VDM-based dynamic analysis of adaptive structure

In this section we will formulate the VDM-based description of dynamic
response of elasto-plastic truss structure. Applying assumed time discreti-
sation, the evolution of strains and stresses (with respect to initial cross-
sections A′) can be expressed as follows:

εi(t) = εL
i (t) +
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j
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(2.2)

where the so-called dynamic influence matrices Dij(t−τ) describe the strain
evolution caused in the truss element member i in the time instance t, due to
unit virtual distortion impulse generated in member j in the time instant τ .
However, in matrix DD

ij unit impulse is applied by the Dirac-like function

and in matrix DH
ik by the Heavyside-like function. The vector denotes the

strain evolution due to external loads applied to elastic structure with initial
material distribution (unmodified cross-sections of members), ε0

i (t) denotes
virtual distortions responsible for modification of design variables and β0

i (t)
describes plastic-like distortions. Note that the matrix D stores information
about the entire structure properties (including boundary conditions) and
describes dynamic (not static) structural response to locally generated im-
pulse of virtual distortion. From now on, we assume that small Latin indices
j run through all modified members, and small Latin indices k run through
all plastified elements.

Taking advantage of two expressions for the internal forces applied to
the so-called distorted (2.3) (with modification of material distribution mod-
elled through virtual distortions) and modified (2.4) (with redesigned cross-
sections form A to A′, without imposing virtual distortions) structure:

Pi(t) = EiAi

(

εi(t) − ε0
i (t) − β0

i (t)
)

, (2.3)

Pi(t) = EiA
′

i

(

εi(t) − β0
i (t)

)

, (2.4)

a formula combining components ε0
i (t) and β0

i (t) can be derived, where these
components are non-zero only for distorted and/or plastified elements.
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If we assume that forces and strains in both structures: distorted (2.3)
and modified (2.4) are the same, the modifications simulated with virtual
distortions can be combined with these distortions through the following
formula:

ε0
i (t) = (1 − µi)

(

εi(t) − β0
i (t)

)

, (2.5)

where εi(t) describes strain in member i in time t, while µi = Ai

A′

i
denotes

ratio of new cross-section to initial one. Parameter µi ∈ 〈0, 1〉 specifies size
of modification of cross-sections in element i. Condition µi = 1 means that
there is no change of cross-section in element i, whereas condition µi = 0
means that element i has been eliminated.

The formula (2.5) can be rewritten in the following form:

µi =
Ai

A′

i

=
εi(t) − ε0

i (t) − β0
i (t)

εi(t) − β0
i (t)

. (2.6)

Now let us substitute the time-dependent strain (2.1) to formula (2.5),
getting the following set of equations:

∑

τ6t
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D
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∆ε0
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L
i (t). (2.7)

To obtain ∆ε0
j (t) for entire time period t ∈ 〈0, T 〉, we have to solve (step

by step) the set of equations (2.7) for all time instances. However, if we
assume that

Dij (0) = 0, (2.8)

we will get a simple diagonal form given by

∆ε0
i (t) = (1 − µi)ε

L
i (t) +
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+
∑

τ<t

∑

j

[

(1 − µi)DD
ij(t − τ) − δij

]

∆ε0
j (τ), (2.9)

which requires only computation of the right-hand side expression. If we know
the parameter µi, the step-by-step determination of the increment ∆ε0

i (t) can
be performed making use of the formula (2.9).

In order to take into account elasto-plastic structural behaviour, let us
apply bilinear constitutive model with hardening (Fig. 1), given by

σi(t) − σ∗

i = γi Ei

(

εi(t) − ε∗i
)

, (2.10)
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Figure 1. Piece-wise linear constitutive relation for the adaptive structural mem-
ber.

where σ∗

i denotes plastic yield stress, γi denotes hardening parameter and Ei

denotes Young’s modulus.
For the modified structure, the stress formula must be rescaled by param-

eter µi, and the corrected stress equation is given by following relationship:

σi(t) =
σ′

i(t)

µi
= Ei

(

εi(t) − β0
i (t)

)

. (2.11)

Now, let us substitute strain (2.1) and stress (2.2) to formula (2.10), which
leads to the following set of equations:

∑

τ6t

∑

k

[

(1 − γi)DH
ik(t − τ) − δik

]

∆β0
k(τ)

+
∑

τ6t

∑

j

(1 − γi)DD
ij(t − τ)∆ε0

j (τ) = −(1 − γi)
(

εL
i (t) − ε∗i

)

. (2.12)

Once again let us use assumption (2.8). Then we get the simple form
to calculate plastic-like distortion in each time step, which requires only
computation of the right-hand side expression given by the formula:

∆β0
i (t) = (1 − γi)

(

εL
i (t) − ε∗i

)

+
∑

τ6t

∑

j

(1 − γi)Dij(t − τ)∆ε0
j (τ)

+
∑

τ<t

∑

k

[(1 − γi)Hik(t − τ) − δik]∆β0
k(τ). (2.13)

Formulas (2.8), (2.9) and (2.13) allow us to compute the time evolution of
virtual distortions modelling both: assumed remodelling of material distri-
bution as well as adapted plastic-like stress limits.
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If there is no plasticity in our problem, then plastic-like distortions are
equal to zero and the equation (2.9) takes the following form:

∆ε0
i (t) = (1 − µi) εL

i (t) +
∑

τ<t

∑

j

(

(1 − µi)D
D
ij(t − τ) − δij

)

∆ε0
j (τ). (2.14)

Analogously, if there is no remodelling, distortions are equal to zero (the
parameter µi is equal to one) and equation (2.13), determining plastic-like
distortions development, takes the following form:

∆β0
i (t) = (1 − γi)

(

εL
i (t) − ε∗i

)

+
∑

τ<t

∑

k

[(1 − γi)Hik(t − τ) − δik] ∆β0
k(τ).

(2.15)

3. Gradient-based approach using VDM

Let us assume that the objective function is defined as maximization
of dissipated energy during the adaptation process, given by the following
formula:

Umax =
∑

t

∑

i

σi(t)∆βi(t)µiA
′

ili, (3.1)

subject to constrains:

−β̃i 6 βi 6 β̃i, 0 6 µi 6 1, µiA
′

ili = const.,

where β̃i denotes the lower and upper limit imposed on plastic-like distor-
tions, µiA

′

ili denotes the total volume of material, which should be constant
during remodelling process.

To make the further analysis more communicative, let us distinguish two
particular cases. The first one, dealing with the best material redistribution
in all structural members, leads to determination of the following design
variables: µi = Ai

A′

i
. In this case ∆β0

k(t) = 0, and is replaced by εi(t) in the

objective function (3.1).
The gradient of this objective function can be calculated analytically and

takes the following form:

∂U

∂µm
=

(

∂U

∂σp(t)

∂σp(t)

∂∆ε0
j (t)

+
∂U

∂εk(t)

∂εk(t)

∂∆ε0
j (t)

)

∂∆ε0
j(t)

∂µm
+

∂U

∂µm
, (3.2)

where the particular components can be expressed as follows:

∂∆U

∂σp(t)
= εp(t)µpA

′

plp,
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tem of equations obtained thought differentiation of the formula (2.7) and
by assuming (2.8), we get:
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In the second case we are looking for optimal distribution of yield stress
limits in structural members and the design variables during optimisation
process are σ∗

i . The corresponding gradient of the objective function, with
respect to yield stress limits, takes the following form:

d∆Ui

dσ∗

l

=

(
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+
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)
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l

, (3.3)

where the new components of gradient can be expressed as follows:

∂σp(t)

∂∆β0
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The partial derivative
∂∆β0

k
(t)

∂σ∗

l
can be determined from the following sys-

tem of equations obtained through differentiation of the formula (2.12) and
assumption of (2.8):

∂∆β0
k(t)
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l

= −
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m

[
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l

.

Finally, the last case couples optimisation sub-problems: remodelling and
adaptation of the structure. The design variables describe simultaneously
material redistribution as well as yield stress limits: µi = Ai

A′

i

and σ∗

i , respec-

tively.
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The coupled gradient formula takes the following form:
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l

=
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(
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+
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l

. (3.4)

4. Numerical Example

Simple truss structure (Fig. 2), has been chosen to prove functionality of
the VDM based approach described above.
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Figure 2. Testing example.

Let us assume first the yield stress limits for elements 1 and 3 are the same
and equal to σ∗

1 = σ∗

2 = 5 · 108 Pa, while the limit for element 2 is equal to
σ∗

i = 4.5·108 Pa. Verification of results obtained via the VDM-based approach
versus analysis performed with use of ANSYS is demonstrated in Fig. 3. In
the next example all elements have been assumed to have the same yield
stress limits σ∗

i = 5 · 108 Pa, but different cross-sections, determined by the
following parameters: µ1 = µ3 = 0.7 and µ2 = 0.5. The corresponding results
are shown in Fig. 4.

5. Conclusions

• New approach to optimal design of dynamically loaded structures,
based on the Virtual Distortion Method has been presented.

• This VDM-based approach allows for numerically efficient computation
of analytically calculated gradients (with respect to mass distribution
and yield stress limits).
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Figure 3. First testing example.
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Figure 4. Second testing example.
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• It is postulated that various, gradient-based optimal design problems
can be effectively solved using algorithms based on the proposed ap-
proach (e.g. adaptation to maximal impact energy or the smoothest
adaptation to determined impact).

• Further research is needed to develop corresponding, operational, nu-
merical algorithms.
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